SNSB
Summer Term 2013
Ergodic Theory and Additive
Combinatorics
Laurenţiu Leuştean

Seminar 1

(S1.1) Define an equivalence relation on \mathbb{R} by

$$
\begin{equation*}
x \sim y \text { if and only if } x-y \in \mathbb{Z}, \tag{2.13}
\end{equation*}
$$

let \mathbb{R} / \mathbb{Z} be the set of equivalence classes $[x]$, and $\pi: \mathbb{R} \rightarrow \mathbb{R} / \mathbb{Z}$ be the natural projection. Endow \mathbb{R} / \mathbb{Z} with the quotient topology and for every $\alpha \in[0,1)$ define

$$
T_{\alpha}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}, \quad T_{\alpha}([x])=[x+\alpha]
$$

Prove that $\left(\mathbb{R} / \mathbb{Z}, T_{\alpha}\right)$ is a TDS isomorphic with $\left(\mathbb{S}^{1}, R_{a}\right)$, where $\alpha \in[0,1)$ and $a=e^{2 \pi i \alpha}$.
Let \mathcal{F} be a collection of blocks over W, which we will think of as being the forbidden blocks. For any such \mathcal{F}, define $X_{\mathcal{F}}$ to be the set of sequences which do not contain any block in \mathcal{F}.

Definition 2.3.8. A shift space (or simply shift) is a subset X of a full shift $W^{\mathbb{Z}}$ such that $X=X_{\mathcal{F}}$ for some collection \mathcal{F} of forbidden blocks over W.

Note that the empty space is a shift space, since putting $\mathcal{F}=W^{\mathbb{Z}}$ rules out every point. Furthermore, the full shift $W^{\mathbb{Z}}$ is a shift space; we can simply take $\mathcal{F}=\emptyset$, reflecting the fact that there are no constraints, so that $W^{\mathbb{Z}}=X_{\mathcal{F}}$.

The collection \mathcal{F} may be finite or infinite. In any case it is at most countable since its elements can be arranged in a list (just write down its blocks of length 1 first, then those of length 2 , and so on).

Definition 2.3.9. Let X be a subset of the full shift $W^{\mathbb{Z}}$, and let $\mathcal{B}_{n}(X)$ denote the set of all n-blocks that occur in points of X. The language of X is the collection

$$
\begin{equation*}
\mathcal{B}(X)=\bigcup_{n \geq 0} \mathcal{B}_{n}(X) . \tag{2.14}
\end{equation*}
$$

For a block $u \in \mathcal{B}(X)$, we say also that u occurs in X or x appears in X or x is allowed in X.
(S1.2) Let $X \subseteq W^{\mathbb{Z}}$ be a nonempty subset of $W^{\mathbb{Z}}$.
(i) $X \subseteq X_{\mathcal{B}(X)}$.
(ii) If X is a shift space, then $X=X_{\mathcal{B}(X)^{c} \text {. Thus, the language of a shift space determines }}$ the shift space.
(S1.3) Let $X \subseteq W^{\mathbb{Z}}$ be a nonempty subset of $W^{\mathbb{Z}}$. The following are equivalent
(i) X is a shift space.
(ii) For every $\mathbf{x} \in W^{\mathbb{Z}}$, if $\mathbf{x}_{[i, j]} \in \mathcal{B}(X)$ for all $i \geq j \in \mathbb{Z}$, then $\mathbf{x} \in X$.
(iii) X is a closed strongly T-invariant subset of $W^{\mathbb{Z}}$.
(S1.4) Determine whether the following sets are shift spaces or not:
(i) X is the set of all binary sequences with no two 1's next to each other.
(ii) X is the set of all binary sequences so that between any two 1's there are an even number of 0's.
(iii) X is the set of points each of which contains exactly one symbol 1 and the rest 0 's.

