SNSB Summer Term 2013 Ergodic Theory and Additive Combinatorics Laurențiu Leuștean

24.04.2013

Seminar 1

(S1.1) Define an equivalence relation on \mathbb{R} by

$$x \sim y$$
 if and only if $x - y \in \mathbb{Z}$, (2.13)

let \mathbb{R}/\mathbb{Z} be the set of equivalence classes [x], and $\pi : \mathbb{R} \to \mathbb{R}/\mathbb{Z}$ be the natural projection. Endow \mathbb{R}/\mathbb{Z} with the quotient topology and for every $\alpha \in [0, 1)$ define

$$T_{\alpha} : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}, \ T_{\alpha}([x]) = [x + \alpha].$$

Prove that $(\mathbb{R}/\mathbb{Z}, T_{\alpha})$ is a TDS isomorphic with (\mathbb{S}^1, R_a) , where $\alpha \in [0, 1)$ and $a = e^{2\pi i \alpha}$.

Let \mathcal{F} be a collection of blocks over W, which we will think of as being the **forbidden blocks**. For any such \mathcal{F} , define $X_{\mathcal{F}}$ to be the set of sequences which do not contain any block in \mathcal{F} .

Definition 2.3.8. A shift space (or simply shift) is a subset X of a full shift $W^{\mathbb{Z}}$ such that $X = X_{\mathcal{F}}$ for some collection \mathcal{F} of forbidden blocks over W.

Note that the empty space is a shift space, since putting $\mathcal{F} = W^{\mathbb{Z}}$ rules out every point. Furthermore, the full shift $W^{\mathbb{Z}}$ is a shift space; we can simply take $\mathcal{F} = \emptyset$, reflecting the fact that there are no constraints, so that $W^{\mathbb{Z}} = X_{\mathcal{F}}$.

The collection \mathcal{F} may be finite or infinite. In any case it is at most countable since its elements can be arranged in a list (just write down its blocks of length 1 first, then those of length 2, and so on).

Definition 2.3.9. Let X be a subset of the full shift $W^{\mathbb{Z}}$, and let $\mathcal{B}_n(X)$ denote the set of all n-blocks that occur in points of X. The **language of** X is the collection

$$\mathcal{B}(X) = \bigcup_{n \ge 0} \mathcal{B}_n(X).$$
(2.14)

For a block $u \in \mathcal{B}(X)$, we say also that u occurs in X or x appears in X or x is allowed in X.

- (S1.2) Let $X \subseteq W^{\mathbb{Z}}$ be a nonempty subset of $W^{\mathbb{Z}}$.
 - (i) $X \subseteq X_{\mathcal{B}(X)^c}$.
 - (ii) If X is a shift space, then $X = X_{\mathcal{B}(X)^c}$. Thus, the language of a shift space determines the shift space.
- (S1.3) Let $X \subseteq W^{\mathbb{Z}}$ be a nonempty subset of $W^{\mathbb{Z}}$. The following are equivalent
 - (i) X is a shift space.
 - (ii) For every $\mathbf{x} \in W^{\mathbb{Z}}$, if $\mathbf{x}_{[i,j]} \in \mathcal{B}(X)$ for all $i \geq j \in \mathbb{Z}$, then $\mathbf{x} \in X$.
 - (iii) X is a closed strongly T-invariant subset of $W^{\mathbb{Z}}$.

(S1.4) Determine whether the following sets are shift spaces or not:

- (i) X is the set of all binary sequences with no two 1's next to each other.
- (ii) X is the set of all binary sequences so that between any two 1's there are an even number of 0's.
- (iii) X is the set of points each of which contains exactly one symbol 1 and the rest 0's.